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How Many Galaxies Fit in a Halo?

Constraints on Galaxy Formation EÆciency from Spatial Clustering

Rom�an Scoccimarro1, Ravi K. Sheth2, Lam Hui1, and Bhuvnesh Jain3

ABSTRACT

We study galaxy clustering in the framework of halo models, where gravitational clustering

is described in terms of dark matter halos. At small scales, dark matter clustering statistics

are dominated by halo density pro�les, whereas at large scales, correlations are the result of

combining non-linear perturbation theory with halo biasing. Galaxies are assumed to follow the

dark matter pro�les of the halo they inhabit, and galaxy formation eÆciency is characterized

by the number of galaxies that populate a halo of given mass. This approach leads to generic

predictions: the galaxy power spectrum shows a power-law behavior even though the dark matter

does not, and the galaxy higher-order correlations show smaller amplitudes at small scales than

their dark matter counterparts. Both are in qualitatively agreement with measurements in galaxy

catalogs. We �nd that requiring the model to �t both the second and third order moments of

the APM galaxies provides a strong constraint on galaxy formation models. The data at large

scales require that galaxy formation be relatively eÆcient at small masses, m � 1010M�=h,

whereas data at smaller scales require that the number of galaxies in a halo scale approximately

as the mass to the 0:8th power in the high-mass limit. These constraints are independent of

those derived from the luminosity function or Tully-Fisher relation. We also predict the power

spectrum, bispectrum, and higher-order moments of the mass density �eld in this framework.

Although halo models agree well with measurements of the mass power spectrum and the higher

order Sp parameters in N-body simulations, the model assumption that halos are spherical leads

to disagreement in the con�guration dependence of the bispectrum at small scales. We stress the

importance of �nite volume e�ects in higher-order statistics and show how they can be estimated

in this approach.
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1. Introduction

Understanding galaxy clustering is one of the main goals of cosmology. The wealth of information

provided by galaxy surveys can only be used to extract useful cosmological information if we understand

the relation between galaxy and dark matter clustering|biasing. On large enough scales, galaxy biasing

can be described as a local process, and so galaxy clustering can be used as a direct probe of the primordial

spectrum and Gaussianity of initial conditions (Fry & Gazta~naga 1993; Frieman & Gazta~naga 1994; Fry

1994; Fry & Scherrer 1994; Gazta~naga & M�ah�onen 1996; Matarrese, Verde & Heavens 1997; Gazta~naga &

Fosalba 1998; Frieman & Gazta~naga 1999; Scoccimarro et al. 2000; Durrer et al. 2000). On smaller scales,

however, non-negligible contributions from complex astrophysical processes relevant to galaxy formationmay

complicate the description of galaxy biasing.

Galaxy formation is not yet understood from �rst physical principles. However, followingWhite & Rees

(1978) and White & Frenk (1991), a number of prescriptions based on reasonable recipes for approximating

the complicated physics have been proposed for incorporating galaxy formation into numerical simulations

of dark matter gravitational clustering (see, e.g., Kau�mann et al. 1999, Somerville & Primack 1999 or

Benson et al. 2000 for some of the most recent work). These \semianalytic galaxy formation" schemes can

provide detailed predictions for galaxy properties in hierarchical structure formation models, which can then

be compared with observations.

The basic assumption in the semianalytic approach is that galaxy biasing can be described as a two-

step process. First, the formation and clustering of dark matter halos can be modeled by neglecting non-

gravitational e�ects.4 This can be done reasonably accurately following the analytic results of Mo & White

(1996), Mo, Jing & White (1997) and Sheth & Lemson (1999). Second, the distribution of galaxies within

halos, which in principle depends on complicated physics, can be described by a number of simplifying

assumptions regarding gas cooling and feedback e�ects from supernova. For the purposes of this paper, the

main outcome of this second step is the number of galaxies that populate a halo of a given mass, Ngal(m).

In this paper we consider the problem of galaxy clustering from a complementary point of view to

semianalytic models. We construct clustering statistics from properties of dark matter halos and the Ngal(m)

relation, and show how these simple ingredients can be put together to make reasonably accurate analytic

predictions about the galaxy power spectrum, bispectrum, and higher-order moments of the galaxy �eld.

We also consider the inverse problem: we show how measurements of galaxy clustering can constrain the

Ngal(m) relation. We show in particular that the variance and skewness of the galaxy distribution in the

APM survey provide signi�cant constraints on the Ngal(m) relation.

Our approach to gravitational clustering has a long history, dating back to Neyman, & Scott (1952),

and then explored further by Peebles (1974), and McClelland & Silk (1977a,b;1978). These works considered

perturbations described by halos of a given size and pro�le, but distributed at random. A complete treatment

which includes the e�ects of halo-halo correlations was �rst given by Scherrer & Bertschinger (1991). Recent

work has focused on applications of this formalism to the clustering of dark matter, e.g. the small-scale

behavior of the two-point correlation function (Sheth & Jain 1997), the power spectrum (Seljak 2000; Peacock

& Smith 2000; Ma & Fry 2000; Cooray & Hu 2000), and the bispectrum for equilateral con�gurations (Ma

& Fry 2000; Cooray & Hu 2000). Interest in this approach has been undoubtedly sparked by recent results

from numerical simulations on the properties of dark matter halos (Navarro, Frenk, & White 1996, 1997;

4Halos here are de�ned in the sense of Press & Schechter (1974). There is not necessarily a one-to-one correspondence

between halos and galaxies.
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Bullock et al. 1999; Moore et al. 1999).

This paper is organized as follows. In Section 2 we review the halo model formalism for the power

spectrum, bispectrum and higher-order moments of the smoothed density �eld, and compare the predictions

with numerical simulations in Section 3. We discuss in detail the role of �nite volume e�ects which, if

neglected, can lead to incorrect conclusions regarding higher-order statistics. In Section 4, we use the

Ngal(m) relation to make predictions for galaxy, rather than dark matter, clustering statistics (also see Jing,

Mo & B�orner 1998; Seljak 2000; Peacock & Smith 2000). To illustrate our approach, we use the Ngal(m)

relation obtained from the semianalytic models of Kau�mann et al. (1999). In Section 5 we discuss the

constraints on Ngal(m) derived from analysis of counts-in-cells of the APM survey. Section 6 summarizes

our conclusions.

2. Dark Matter Clustering

2.1. Formalism

In this section we follow the formalism developed by Scherrer & Bertschinger (1991). The dark matter

density �eld is written as

�(x) =
X
i

f(x � xi;mi) �
X
i

mi u(x� xi;mi) =
X
i

Z
dmd3x0Æ(m �mi)Æ

3(x0 � xi)mu(x � x0;m); (1)

where f denotes the density pro�le of a halo of mass mi located at position xi. The mean density is

�� = h �(x) i = h
X
i

mi u(x� xi;mi) i =

Z
n(m)mdm

Z
d3x0um(x � x0); (2)

where we have replaced the ensemble average by the average over the mass function n(m) (which gives the

density of halos per unit mass) and an average over space i.e. h
P

i Æ(m � mi)Æ3(x0 � xi)i = n(m). Our

normalization convention is such that
R
d3x0um(x�x0) = 1 and

R
n(m)mdm = ��. The two-point correlation

function can be written as

��2�(x � x0) =

Z
n(m)m2dm

Z
d3yum(y)um(y+ x � x0) +

Z
n(m1)m1dm1

Z
n(m2)m2dm2

�

Z
d3x1um1

(x� x1)

Z
d3x2um2

(x0 � x2) �(x1 � x2;m1;m2); (3)

where the �rst term describes the case where the two particles occupy the same halo, and the second

term represents the contribution of particles in di�erent halos, with �(x � x0;m1;m2) being the two-point

correlation function of halos of mass m1 and m2. Since we are dealing with convolutions of halo pro�les, it is

much easier to work in Fourier space, where expressions become multiplications over the Fourier transform

of halo pro�les. We use the following Fourier space conventions:

A(k) =

Z
d3x

(2�)3
exp(�ik � x)A(x); (4)
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and

h Æ(k1)Æ(k2) i = ÆD(k12)P (k1); (5)

h Æ(k1)Æ(k2)Æ(k3) i = ÆD(k123)B123; (6)

where P (k) and B123 � B(k1; k2; k3) denote the power spectrum and bispectrum, respectively. Thus, the

power spectrum reads

��2P (k) = (2�)3
Z

n(m)m2dmjum(k)j
2 + (2�)6

Z
um1

(k)n(m1)m1dm1

Z
um2

(k)n(m2)m2dm2P (k;m1;m2);

(7)

where P (k;m1;m2) represents the power spectrum of halos of mass m1 and m2. Similarly, the bispectrum

is given by

��3B123 = (2�)3
Z

n(m)m3dm �3
i=1um(ki) + (2�)6

Z
um1

(k1)n(m1)m1dm1

Z
um2

(k2)um2
(k3)n(m2)m

2
2dm2

�P (k1;m1;m2) + cyc:+ (2�)9
� 3Y
i=1

Z
umi

(ki)n(mi)midmi

�
B123(m1;m2;m3); (8)

where B123(m1;m2;m3) denotes the bispectrum of halos of mass m1;m2;m3. So far the treatment has been

completely general. To make the model quantitative, we must specify the halo pro�le um(x), the halo mass

function n(m) and the halo-halo correlations encoded in P (k;m1;m2), B123(m1;m2;m3), etc.

2.2. Halo Pro�les

For the halo pro�le we use (Navarro, Frenk & White 1997; hereafter NFW)

uR(r) =
fc3

4�R3
vir

1

cr=Rvir(1 + cr=Rvir)2
; (9)

where f = 1=[ln(1 + c) � c=(1 + c)], Rvir is the virial radius of the halo, related to its mass by m =

(4�R3
vir=3)���, where � = 200; 340 for an 
 = 1; 0:3 universe, respectively. We will also use the Lagrangian

radius R (the initial radius where the mass m came from) to specify halo sizes; R = Rvir�
1=3. It is

convenient to work in units of the characteristic non-linear mass m� or the equivalent scale R� (de�ned

such that �(R�) = Æc; note that m� = (4�R3
�=3)��). Since m = 1:16� 1012
(Rh=Mpc)3M�/h, for �CDM

(
 = 0:3, 
� = 0:7) with �8 = 0:90, R� = 3:135 Mpc/h, so m� = 1:07� 1013M�/h. The Fourier transform

of the halo pro�le reads:

uR(k) =

Z
d3x

(2�)3
exp(�ik � x)uR(r) �

1

(2�)3
u(k̂; y); (10)

where y = R=R�, k̂ = kR���1=3, and
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u(k̂; y) = f
h
sin�

�
Si[�(1 + c)]� Si(�)

�
+ cos�

�
Ci[�(1 + c)]� Ci(�)

�
�

sin(�c)

�(1 + c)

i
; (11)

where � � k̂y=c, Si(x) =
R x
0 dt sin(t)=t is the sine integral and Ci(x) = �

R1
x dt cos(t)=t is the cosine

integral function. The concentration parameter quanti�es the transition from the inner to the outer slope in

the NFW pro�le. For the concentration parameter of halos, we use the result (Bullock et al. 1999)

c(m) � 9
� m

m�

��0:13
: (12)

Note that halos de�ned as above are somewhat di�erent from the prescription in NFW, which de�nes

Rvir as the scale within which the mean enclosed density is 200 times the critical density, independent of

cosmology. Both approaches agree for 
 = 1, whereas for the model we use 
 = 0:3 and thus our virial

radius is de�ned at the scale where the mean enclosed density density is 340� 0:3 � 100 times the critical

density. Thus, our characteristic density is smaller than NFW's by a factor of two, and our virial radius

is correspondingly larger. These two e�ects partially cancel and lead to a very similar prediction for halo

pro�les (taking also into account that the concentration parameters are slightly di�erent as well).

2.3. Mass Function

The mass function in normalized units reads

n(m) m dm � ��
dy

y
~n(y) = ��

dy

y
 A

r
��3

2�

�
1 + (��2)�p

�
exp(���2=2); (13)

where � � Æc=� with Æc = 1:68 the colapse threshold given by the spherical collapse model, A = 0:5; 0:322,

p = 0; 0:3 and � = 1; 0:707 for the PS (Press & Schechter 1974) and ST (Sheth & Tormen 1999) mass

function, respectively (see Jenkins et al. 2000 for a recent comparison of these mass functions against N-body

simulations). Note that in this formula the linear variance is �2 = �2L(R�y), and (R) � �d ln�2L(R)=d lnR

is the logarithmic slope of the linear variance as a function of scale.

2.4. Halo-Halo Correlations

Following Mo & White (1996) (see also Mo, Jing & White (1997); Sheth & Lemson (1999); Sheth &

Tormen (1999) for extensions), halo-halo correlations are described by non-linear perturbation theory plus

a halo biasing prescription obtained from the spherical collapse model5. For the PS and ST mass functions,

we will need

b1(m) = 1 + �1 +E1; (14)

b2(m) = 2(1 + a2)(�1 + E1) + �2 +E2; (15)

5A treatment of halo biasing beyond the spherical collapse approximation using perturbation theory is given in Catelan et

al. (1998)



{ 6 {

b3(m) = 6(a2 + a3) (�1 + E1) + 3(1 + 2a2) (�2 + E2) + �3 +E3; (16)

b4(m) = 24(a3 + a4)(�1 +E1) + 12
h
a22 + 2(a2 + a3)

i
(�2 + E2) + 4(1 + 3a2)(�3 +E3) + �4 + E4; (17)

where

�1 =
��2 � 1

Æc
; �2 =

��2

Æ2c
(��2 � 3); �3 =

��2

Æ3c
(�2�4 � 6��2+ 3);

�4 =

�
��2

Æ2c

�2

(�2�4 � 10��2 + 15);

E1 =
2p=Æc

1 + (��2)p
;

E2

E1
=

�
1 + 2p

Æc
+ 2�1

�
E3

E1
=

�
4(p2 � 1) + 6p��2

Æ2c
+ 3�21

�
;

E4

E1
=

2��2

Æ2c

�
2
�2�4

Æc
� 15�1

�
+ 2

(1 + p)

Æ2c

�
4(p2 � 1) + 8(p� 1)��2+ 3

Æc
+ 6��2�1

�

a2 = �17=21; a3 = 341=567; and a4 = �55805=130977: (18)

All the En's are zero, and � = 1, if n(m) is given by the PS formula. In this case, our formulae reduce to

those in Mo, Jing & White (1997), although our expression for b4(m) corrects a typographical error in their

equation (15c).

Halo-halo correlations read

P (k;m1;m2) = b1(m1)b1(m2)PL(k); (19)

B123(m1;m2;m3) = b1(m1)b1(m2)b1(m3)B
PT
123 + b1(m1)b1(m2)b2(m3)PL(k1)PL(k2) + cyc:; (20)

and similarly for higher-order moments [see Eqs.(44-45)]. The symbol PL(k) and BPT
123 denotes respectively

the linear power spectrum and the second-order perturbative bispectrum (Fry 1984)

BPT
123 = 2F2(k1;k2)PL(k1)PL(k2) + cyc:; (21)

where F2(k1;k2) = 5=7+1=2 cos�12(k1=k2+k2=k1)+2=7 cos
2 �12, with k1�k2 = k1k2 cos �12. By construction,

the bias parameters obey (n = 2; 3; : : :)

Z
dy

y
~n(y)b1(y) = 1;

Z
dy

y
~n(y)bn(y) = 0: (22)

2.5. Results

Using the ingredients above, we can rewrite the power spectrum and bispectrum as

P (k) =
h
M11(k̂)

i2
PL(k) +M02(k̂; k̂); (23)
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B123 =
� 3Y
i=1

M11(k̂i)
�
BPT
123 +

�
M11(k̂1)M11(k̂2)M21(k̂3)PL(k1)PL(k2) + cyc:

�

+
�
M11(k̂1)M12(k̂2; k̂3)PL(k1) + cyc:

�
+M03(k̂1; k̂2; k̂3) (24)

where (b0 � 1)

Mij(k̂1; : : : ; k̂j) �

Z
dy

y
~n(y)bi(y)[u(k̂1; y) : : :u(k̂j; y)]

�R3
�y

3

6�2

�j�1
: (25)

It is convenient to de�ne the reduced bispectrum Q123,

Q123 �
B123

P1P2 + P2P3 + P3P1
; (26)

which shows a much weaker scale dependence than the bispectrum itself, since at large scales PT predicts

B / P 2, and at small scales the hierarchical ansatz also predicts such a behavior.

We can also obtain the one-point moments smoothed at scale R from Fourier space correlations by

integrating with a top-hat window function in Fourier space, W (kR). For example, from Eq. (23), the

variance is

�2(R) =

Z
d3kP (k)W (kR)2 � �2L(R) +

Z
dy

y
~n(y)y3 u2(R; y); (27)

where

um(R; y) =
2�

3�

Z
k̂2dk̂ [u(k̂; y)]m W 2(kR); (28)

and we have assumed that
R
M2

11(k̂)PL(k)d
3kW (kR)2 � �2L(R) since M11(k̂) ! 1 as k ! 0, and at smaller

scales the power spectrum is dominated by the second term in Eq. (23). Similarly the third moment reads

(Wi � W (kiR)),

h Æ3(R) i =

Z
d3k1d

3k2d
3k3ÆD(k123)B123W1W2W3

� SPT3 �4L(R) + 3�2L(R)

Z
dy

y
~n(y)b1(y)y

3 u2(R; y) +

Z
dy

y
~n(y)y6u(R; y)u2(R; y): (29)

There are several approximations involved in this result. First, we take the large-scale limit M11 � 1,

M21 � 0, valid to a good approximation because of the consistency conditions, Eq. (22). In addition, we

assume that the con�guration dependence of the 1-halo and 2-halo terms in Eq.(24) can be neglected (this

holds very well for the 2-halo term and approximately for the 1-halo term, as we shall discuss below; e.g. see

bottom right panel in Fig. 4). We can thus evaluate these terms for equilateral con�gurations, and simplify

the angular integration by further assuming W1W2W12 � W 2
1W

2
2 , the leading-order term in the multipolar

expansion. With similar approximations, we can derive higher-order connected moments. De�ne
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Aij(R) �

Z
dy

y
~n(y) bi(y) y

3(j+1) [u(R; y)]j u2(R; y); (30)

so that �2 = �2L +A00 and h Æ3 i = SPT3 �4L + 3�2LA10 + A01. Then it follows that

h Æ4 ic = SPT4 �6L + 6
SPT3
3

�4LA10 + 7
4�2L
7

A11 + A02; (31)

h Æ5 ic = SPT5 �8L + 10
SPT4
16

�6LA10 + 25
3SPT3
5

�4LA11 + 15
�2L
3
A12 +A03; (32)

where the terms in h Æn ic are ordered from n-halo to 1-halo contributions. The coeÆcient of an m-halo

contribution to h Æn ic is given by s(n;m) (e.g. 6 and 7 in the second and third terms of Eq. [31]), the

Stirling number of second kind, which is the number of ways of putting n distinguishable objects (Æ) into m

cells (halos), with no cells empty (Scherrer & Bertschinger 1991). Thus, in general we can write

h Æn ic = SPTn �
2(n�1)
L +

n�1X
m=2

s(n;m) �nmS
PT
m �

2(m�1)
L A1n�m�1 +A0n�2; (33)

where the �rst term in Eq. (33) represents the n�halo term, the second the contributions from m-halo

terms, and the last is the 1-halo term. The coeÆcients �nm measure how many of the terms contribute as

A1n�m�1, the other contributions being subdominant. For example, in Eq. (31) the 2-halo term has a total

contribution of 7 terms, 4 of them contain 3 particles in one halo and 1 in the other, and 3 of them contain

2 particles in each. The factor 4=7 is included to take into account that the 3� 1 amplitude dominates over

the 2�2 amplitude. Note that in these results we neglected all the contributions from the non-linear biasing

parameters in view of the consistency conditions, Eq. (22). When neglecting halo-halo correlations, Eq.(33)

reduces to those in Sheth (1996) in the limit that halos are point-size objects (u(k̂; y) = 1).

For the perturbative values, we use (Bernardeau 1994)

SPT3 =
34

7
� ; SPT4 =

60712

1323
�
62

3
 +

7

3
2; (34)

SPT5 =
200575880

305613
�
1847200

3969
 +

6940

63
2 �

235

27
3; (35)

where for simplicity we neglect derivatives of  with respect to scale, which is a good approximation for

R <� 20 Mpc/h.

Before we compare these predictions for dark matter clustering with numerical simulations, it is im-

portant to note that, within this framework, there are many ingredients which can be adjusted to improve

agreement with simulations. Rather than exploring all possible variations, we have chosen to always use

the NFW halo pro�le and the dependence of the concentration parameter on mass given earlier, and only

change the mass function between PS and ST; it turns out that these two models usually bracket the results

of numerical simulations. Other choices are considered in Seljak (2000), Ma & Fry (2000), Cooray & Hu

(2000). The sensitivity of the results to these choices reects the underlying uncertainty in this type of

calculation. As numerical simulation results converge on the di�erent ingredients, however, the predictive

power of this method will increase.
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3. Comparison with Numerical Simulations

We have run two sets of N-body simulations using the adaptive P3M code Hydra (Couchman, Thomas,

& Pearce 1995). Both have 1283 particles and correspond to a �CDM model (
 = 0:3, 
� = 0:7) with

�8 = 0:9. The �rst set contains 14 realizations of a box-size 100 Mpc/h, and softening length lsoft = 100

kpc/h. The second set has 4 realizations of a box-size 300 Mpc/h, and lsoft = 250 kpc/h, which allows us

to check for �nite volume e�ects. We have also studied the e�ects of changing the softening, number of

time-steps and 
 as described below.

3.1. Bispectrum Measurements: Finite Volume E�ects

Figure 1 shows the results on the reduced bispectrum for equilateral triangles as a function of scale.

The square symbols show the measurements from the \large" box (Lbox = 300 Mpc/h) whereas the triangle

symbols show the measurements from the \small" box (Lbox = 100 Mpc/h). Error bars are obtained from

the scatter among 4 and 14 realizations, respectively. The disagreement between the results of the large

and small boxes is a result of �nite volume e�ects; the bispectrum is much more sensitive to the presence

or absence of massive halos than the power spectrum (we will quantify this below), so the smallness of the

small box is important. Note that the total volume in the 14 small-box realizations only adds up to about

half of the volume of a single large-box realization. This translates into a large scatter among realizations

of the small box; 3 such realizations are shown as solid lines in Fig. 1. Note that not only the amplitude

of Qeq but also its dependence on scale uctuates signi�cantly from realization to realization, so one must

interpret measurements made using only a small number of small volume simulations very cautiously. A

similar situation holds for higher-order moments (e.g. Colombi, Bouchet & Hernquist 1996), as we shall see

below.

As is well known, the distribution of higher-order statistics is non-Gaussian with positive skewness (e.g.

Szapudi & Colombi 1996; Szapudi et al. 1999); the mean value of a higher-order statistic is a consequence

of having a few large excursions above the mean, with most values underestimating the mean. This is

exactly what we see in the small box realizations: most of them are closer to the bottom solid line than

the top one in Fig. 1. Even fourteen realizations of the small box are not enough to recover the correct

answer given by the large-box mean (square symbols). In other words, the skewness of the Q distribution

makes convergence towards the true value much slower for the small-box simulations (Szapudi & Colombi

1996; see also Scoccimarro 2000 for the bispectrum case). Notice that this is not bias in a statistical sense:

given suÆcient number of realizations, the mean will always converge to the true value; it is just that the

convergence is slow. It is also important to note that when measuring Q from multiple realizations, one

should always obtain the average of B and the average of P separately from the realizations, and only at

the end divide to obtain Q (which is what we have done in making Fig. 1). Otherwise, a \ratio" bias would

result (Hui & Gazta~naga 1999), and the skewness measurements from the small box simulations would be

lower than are shown in Fig. 1. Such an estimator bias will certainly a�ect measurements of Q from, say, a

single realization of a size similar to our small box.

Figure 1 also shows the predictions of (tree-level) PT, which agree very well with the large-box results

at large scales, as well as the predictions of hyperextended PT (HEPT; Scoccimarro & Frieman 1999), which

has been proposed as a description of clustering in the non-linear regime (k >� 1 h/Mpc). The agreement

with HEPT is good up to the resolution scale of our simulations, which we estimate as k � 4 h/Mpc. It

is not straightforward to assign a resolution scale in Fourier space (i.e. it is not just 2�=lsoft, since a given
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Fourier mode has contribution from a range of scales. Two-body relaxation causes the two-point correlation

function to be underestimated at scales comparable to lsoft, which in turn implies an overestimate of the

reduced bispectrum Q. To illustrate this, we have run the same realization after halving lsoft to 50 Kpc/h

(dashed line in Fig. 1); this shows that beyond k � 4 h/Mpc the bispectrum results are sensitive to the

resolution, so we only plot the small-box results up to this scale. Similarly, we only show results for the

large box up to k � 2 h/Mpc. For our particle number, lsoft cannot be pushed too much smaller than the

values we used, else there would be not enough particles in a cell of radius lsoft to satisfy the uid limit. We

have also checked the sensitivity of our results to changes in the number of time steps used in the N-body

integrator and found no di�erence. Changing the density parameter 
 leads to extremely small di�erences

in the reduced bispectrum Q, we thus present results only for �CDM. This is true not only in the weakly

non-linear regime, but also in the non-linear regime, as expected from the general nature of the 
 dependence

in the equations of motion (Scoccimarro et al. 1998).

Recently Ma & Fry (2000) claimed that the hierarchical ansatz is not obeyed in N-body simulations.

They based their claim on analysis of one single realization|the equivalent to just one of our small boxes.

Their measurement approximately follows the lower solid line in Fig. 1, which, as we have shown, is seriously

a�ected by �nite volume e�ects (we will quantify these e�ects shortly). To reliably test the hierarchical ansatz

at smaller scales than probed here, one must resort to higher resolution simulations, preferably keeping the

box size as large as possible to avoid �nite volume e�ects. For example, a 300 Mpc/h box 5123 particle

simulation would be able to probe up to k � 10 h/Mpc reliably.

3.2. Comparison with Predictions

The top panel in Fig. 2 shows the ratio of the power spectrum in our two models (PS and ST mass

functions) to the power spectrum �tting formula (Hamilton et al. 1991; Jain, Mo & White 1995; Peacock

& Dodds 1996) as a function of scale k. The dashed (dotted) lines show the contributions to the 1-halo

term in the PS (ST) case from halos having masses in the range 10 < m=m� < 100, 1 < m=m� < 10, and

0:1 < m=m� < 1, from left to right (m� = 1:07 � 1013M�/h). As the PS mass function has more halos

than the ST one when m <� 40m�, the 1-halo term is enhanced. Note the dip in both predictions at k � 0:5

h/Mpc, where the amplitude of 1-halo and 2-halo terms are comparable. This is due to our treatment of

the 2-halo term; we approximate it by simply using linear PT. In practice, non-linear corrections enhance

this term at scales smaller than the non-linear scale, k � 0:3 h/Mpc. However, when including this term

one must also take into account exclusion e�ects (halos cannot be closer than their typical size), otherwise

the power spectrum at intermediate scales would be overestimated. Since exclusion e�ects are non-trivial

to compute (though Sheth & Lemson 1999 suggest how one might do so), the simplest solution is to ignore

these e�ects, because they approximately cancel each other. This is a reasonable approximation because at

the scales where exclusion e�ects become important, 1-halo contributions dominate.

The bottom panel in Fig. 2 shows the prediction of halo models for the reduced bispectrum for equilateral

con�gurations as a function of scale (solid lines). For the ST case we also show the partial contributions

from 1-halo, 2-halo and 3-halo terms in dashed lines, which dominate at small, intermediate and large scales,

respectively. For the PS case we show in dotted lines the contributions to the 1-halo term in Q when the

bispectrum is restricted to the mass range 10 < m=m� < 100 (which dominates at all scales shown in the

plot) and 1 < m=m� < 10. In this case, when taking the ratio in Eq. (26), we have used the full power

spectrum. As expected, comparing the two panels we see that at a given scale the bispectrum is dominated by

larger mass halos than the power spectrum. For the bispectrum at k � 1h/Mpc, this implies that halos with
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m > 40m� contribute more signi�cantly, thus leading to a higher Q. At smaller scales, say k � 10h/Mpc, the

PS mass function has more halos of the relevant masses (m < 40m�), so the bispectrum is larger for PS than

ST (by a factor slightly smaller than the ratio of power spectra), thus the reduced bispectrum Q is higher

again for the ST case. We have also varied the concentration parameter to test the sensitivity of our results.

Doubling the concentration parameter (with the same mass dependence) leads to a signi�cant increase of

the power spectrum at small scales (this consistent with Seljak 2000) and increases Q by about 10% at

small scales. On the other hand, changing the scaling of the concentration parameter by a factor of two to

c(m) = 9(m=m�)
�0:26, decreases (increases) the power spectrum at scales where m=m� > 1 (m=m� < 1)

contributes, as expected. For the bispectrum, larger concentration leads to higher Q, although at a given

scale larger masses contribute than for the power spectrum, so the e�ects are shifted in scale with respect

to the power spectrum case.

Figure 3 compares these results with the measurements in the numerical simulations presented in Fig. 1.

We see that generally there is good agreement between predictions and the simulations; the simulations seem

to be roughly in between the PS and ST predictions. At small scales, the halo models predict that Qeq

increases rapidly with k; the limited resolution of our simulations prevents us from testing this particular

prediction reliably. As we discussed above, �nite volume e�ects can be signi�cant when dealing with the

bispectrum. To quantify this, we have calculated the halo model predictions for cases when the maximum

halo mass is set to mmax = 5:9� 1014M�/h and mmax = 6:8� 1014M�/h for PS and ST respectively (dot-

dashed lines) and mmax = 1014M�/h (dashed lines). These values are those for which the mass functions

would predict just one halo with mass larger than mmax in a (100Mpc=h)3 volume; but since these are

cumulative numbers and both mass functions actually overestimate the number of halos when compared to

simulations (more so PS), a smaller number, such as mmax = 1014M�/h is perhaps a more reasonable cuto�.

In any case, we see that the predictions change signi�cantly; in particular, introducing such a cuto� makes

the scale dependence of Q much more like that seen in most of the realizations of the small box (bottom

solid line in Fig. 1).

One key element in the halo model is that we are using the spherical average (rather than the actual

shapes) of halo pro�les. On the other hand, it is well known that halos found in N-body simulations are not

spherical, but rather triaxial (Barnes & Efstathiou 1987; Frenk et al. 1988; Zurek, Quinn & Salmon 1988).

The bispectrum is the lowest-order statistic which is sensitive to the shapes of structures, so one expects to

�nd di�erences for the bispectrum as a function of triangle shape at small scales where halo pro�les (1-halo

terms) determine correlation functions. Figure 4 shows such a comparison at di�erent scales, for triangles

where k2 = 2k1, as a function of angle � between k1 and k2. The top left panel shows that, at large scales,

the bispectrum agrees reasonably well with simulations; this is of course by construction, since non-linear PT

holds. At smaller scales (top right panel), however, the predictions become independent of triangle shape at

scales where there is still noticeable con�guration dependence. In fact, this is understood from the bottom

right panel which shows the partial contributions for the ST case. We see that the 1-halo term (which is

determined by the halo pro�les) has the opposite con�guration dependence than the 3-halo term, which

comes from non-linear PT.

The fact that Q1h is convex can be understood from the spherical approximation. If halos were exactly

spherical and Q were scale-independent, then one would expect the maximum of Q to occur for equilateral

con�gurations. When k2 = 2k1 the closest con�gurations to equilaterals are isosceles triangles with � � 0:6�.

Aside from an overall slight scale dependence (� = 0 con�gurations are somewhat more non-linear than

� = �), we see that this is indeed the case. Notice also that, if the contribution Q1h were at, the residual

con�guration coming fromQ3h would be enough to produce agreement with the N-body simulations. At even
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smaller scales (bottom left panel), the numerical simulation results become approximately at, but the halo

models predict a convex con�guration dependence due to the fact that Q1h dominates. From these results we

conclude that although halo models predict bispectrum amplitudes which are in reasonable agreement with

simulations, the con�guration dependence is in qualitative disagreement with simulations. Of course, if we

knew the actual halo shapes, then they could be incorporated into the models (at the expense of complicating

the calculations!).

Finally, in Fig. 5, we compare counts-in-cells measurements of the higher-order moments of the smoothed

density �eld in our simulations with the predictions of halo models. Symbols and error bars are as in Fig.1:

the top (bottom) solid line in each case corresponds to the ST (PS) prediction. The dashed lines show the

predictions of HEPT (Scoccimarro & Frieman 1999), and the vertical lines show the softening scale of the large

and small box. The disagreement of the average of 14 small-box measurements with the large-box average is,

again, a manifestation of �nite volume e�ects. As expected, the di�erence becomes increasingly important

for the higher order moments. Despite the many approximations made in the calculations of Sp parameters

in halo models, the agreement with simulations is quite good. We also see a very good agreement with the

HEPT predictions, and that the scales where halo models predict a strong scale dependence are beyond the

limits of our resolution. This also con�rms that our prescription for the resolution limit in Fourier space was

reasonably accurate. Thus, contrary to Ma & Fry (2000), we conclude that higher-resolution simulations in

bigger boxes are essential if one is to test models of the higher-order correlations reliably.

4. Galaxy Clustering

We now turn to a discussion of how to use the halo models described above to predict the clustering

of galaxies. Our treatment follows ideas present in the semianalytic galaxy formation models (Benson et al.

2000; Kau�mann et al. 1999) and has been also explored by Seljak (2000) and Peacock & Smith (2000) for

the case of the power spectrum.

4.1. Galaxy Correlation Functions

To describe galaxy clustering, we need to know the distribution, the mean and the higher-order moments,

of the number of galaxies which can inhabit a halo of mass m. In addition, we need to know the spatial

distribution of galaxies within their parent halo. To illustrate our model predictions, in what follows we

will assume that the galaxies follow the dark matter pro�le (we will discuss what happens if we change this

requirement shortly). This implies that Eq. (7) for galaxies reads

�n2gPg(k) = (2�)3
Z

n(m) hN2
gal(m) i dmjum(k)j

2 +

(2�)6
Z

um1
(k)n(m1) hNgal(m1) i dm1

Z
um2

(k)n(m2) hNgal(m2) i dm2P (k;m1;m2); (36)

where the mean number density of galaxies is

�ng =

Z
n(m) hNgal(m) i dm: (37)
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Thus, knowledge of the number of galaxies per halo moments hNn
gal(m) i as a function of halo mass gives

a complete description of the galaxy clustering statistics within this framework. Note that when the mean

number of galaxies per halo drops below unity, one must use um(k) = 1, the point-size halo limit, since in

this case there is at most a single galaxy (which we assume to be at the center of the halo).

The results for galaxy power spectrum and bispectrum follow those of the dark matter in Eqs.(23-24),

after changing Mij in Eq. (25) to Gij, where

Gij(k̂1; : : : ; k̂j) �
1

�njg

Z
dy

y
~n(y)bi(y)[u(k̂1; y) : : : u(k̂j; y)]

�R3
�y

3

6�2

�j�1 hN j
gal ic

mj
: (38)

Note that in the large-scale limit, the galaxy bias parameters are

bi = Gi1 �
1

�ng

Z
dy

y
~n(y)bi(y)

hNgal i

m
: (39)

Similarly, the galaxy one-point connected moments satisfy

�2g = (�2L)gal +B00; h Æ3g ic = (SPT3 )gal(�
4
L)gal + 3(�2L)galB10 +B01; (40)

h Æ4g ic = (SPT4 )gal(�
6
L)gal + 2Shh3 (�4L)galB10 + 4(�2L)galB11 + B02; (41)

and

h Æ5g ic = (SPT5 )gal(�
8
L)gal +

5

8
Shh4 (�6L)galB10 + 15Shh3 (�4L)galB11 + 5(�2L)galB12 +B03; (42)

where

Bij(R) �
1

bi�n
j+2
g

Z
dy

y
~n(y) bi(y) y

3(j+1) [u(R; y)]j u2(R; y)
hN j+2

gal i

mj+2
; (43)

and the perturbative moments are given by their local bias counterparts (Fry & Gazta~naga 1993)

(�2L)gal = b21�
2
L; (SPT3 )gal =

1

b1

�
SPT3 + 3c2

�
; (SPT4 )gal =

1

b21

�
SPT4 + 12c2S

PT
3 + 4c3 + 12c22

�
; (44)

and

(SPT5 )gal =
1

b31

�
SPT5 + 20c2S

PT
4 + 15c2(S

PT
3 )2 + (30c3 + 120c22)S

PT
3 + 5c4 + 60c2c3 + 60c32

�
; (45)

where ci � bi=b1 and bi are the e�ective bias parameters in Eq. (39). The halo-halo skewness and kurtosis

are given by these expressions upon replacing ci by ciBi0=B10.
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4.2. Galaxies

As a �rst example, we use the results of the semi-analytic models of Kau�mann et al. (1999); these

N-body simulations, halo and galaxy catalogues are publically available. Sheth & Diaferio (2000) show that

in these catalogues, the mean number of galaxies Ngal per halo of mass m are well �t by

hNgal i = hNB + NR i; hNB i = 0:7(m=mB)
�B ; hNR i = (m=mR)

�R ; (46)

where NB and NR represent the number of blue and red galaxies per halo of mass m, and �B = 0 for

1011M�=h � m � mB , �B = 0:8 for m > mB , mB = 4� 1012M�=h, �R = 0:9, and mR = 2:5� 1012M�=h

(no lower mass cut-o� for R). The physical basis for this relation is as follows. At large masses, the gas

cooling time becomes larger than the Hubble time, so galaxy formation is suppressed in large-mass halos,

therefore hNgal i increases less rapidly than the mass. In small-mass halos, however, e�ects such as supernova

winds can blow away the gas from halos, also suppressing galaxy formation, thus the cuto� at small masses.

To calculate the power spectrum and higher-order statistics we also need the second and higher-order

moments of Ngal. The second moment is also obtained from the semi-analytic models, and obeys

hNgal(Ngal � 1) i � �2(m) hNgal

2

i; (47)

where the function �(m) quanti�es deviations fromPoisson statistics �(m) � log
p
m=m11 (m11 � 1011M�=h)

for m < 1013M�=h and �(m) = 1 otherwise; that is, for large masses the scatter about the mean number of

galaxies is Poisson, whereas for small masses it is sub-Poisson.

To model the higher-order moments we will assume that the number of galaxies in a halo of mass m

follows a binomial distribution:

p(Ngal = njm) =

�
Nm

n

�
pnm(1 � pm)

Nm�n: (48)

The binomial distribution is characterized by two parameters, Nm and pm, which we set by requiring

that the �rst two moments of the distribution equal those from the semianalytics. Speci�cally, the �rst and

second factorial moments are Nmpm and Nmpm(Nmpm � pm), and we require that they equal hNgal i and

hNgal(Ngal � 1) i, respectively. One can think of Nm as the maximum number of galaxies which can be

formed with the available mass m, and of pm as the probability of actually forming a galaxy. For a constant

Nmpm, the small pm limit gives a Poisson distribution. Nm is an increasing function of mass, whereas pm
peaks at m � 1012M�=h with pm � 0:8. The higher-order factorial moments are completely determined

once the �rst two moments have been speci�ed; they obey

hNgal(Ngal � 1) : : : (Ngal � j) i = �2(2�2 � 1) : : : (j�2 � j + 1) hNgal

j+1

i : (49)

In this model, all the moments become Poisson-like at the same mass scale, i.e. when �(m) = 1, all the

factorial moments become Poisson, hNgal(Ngal � 1) : : : (Ngal � j) i = hNgal i
j+1. However, at small scales,

where small halos contribute, the galaxy counts per halo are signi�cantly sub-Poisson. Our binomial model

provides a simple way of accounting for this. To correct the power spectrum and bispectrum for shot noise

we use the same form as in the Poisson case (Peebles 1980):
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P c(k) = P (k)� "; Bc
123 = B123 � "(P c

1 + P c
2 + P c

3 )� "2; (50)

but where the parameter " is set to " � P (k!1), to avoid making the corrected power spectrum negative

at small scales. In the Poisson case, "�1 = (2�)3�ng, we �nd that in our prescription " can be smaller than

the Poisson value by almost a factor of two. Although this model is somewhat arbitrary, our results are

insensitive to shot noise substraction for k <� 5h/Mpc and smoothing scales R >� 1Mpc/h.

Figure 6 shows the resulting galaxy correlation functions. The top panel shows the predictions of the

ST (dot-dashed) and PS (solid) mass functions for galaxies using the relations given above. For comparison,

we also show the mass power spectrum predicted by the �tting formula of Peacock & Dodds (1996). Note

how the galaxy power spectrum is well approximated by a power law, even though the dark matter spectrum

is not. This is due to the fact that galaxy formation is ineÆcient in massive halos; this suppresses the 1-halo

term compared to the dark matter case. In addition, at small scales the sub-Poisson statistics of galaxy

counts per halo suppresses the galaxy spectrum relative to the dark matter. The dotted line in the top

panel shows how the predictions change for the ST model when the low-mass cuto� in the Ngal(m) relation

is raised from mcut = 1011M�/h to mcut = 1011:5M�/h. At large scales, suppressing low-mass halos leads

to an increase of the bias factor from b1 = 0:86 to b1 = 1:12. At small scales, since these low-masses do

not contribute signi�cantly, the overall ampli�cation of the 1-halo term is due to the lower galaxy number

density, which decreases by almost a factor of two. Therefore, our galaxy clustering predictions are quite

sensitive to the low-mass cuto� for galaxy formation.

The bottom panel in Fig. 6 shows the galaxy reduced bispectrum Qgal for equilateral con�gurations

as a function of scale (solid lines), compared to the dark matter value (dashed) for the ST mass function.

At large scales, the halo models predict a negative quadratic bias, which suppresses the bispectrum. At

smaller scales, both the power spectrum and bispectrum are suppressed, but at a given scale the bispectrum

is sensitive to larger mass halos than the power spectrum, so Qgal rises more gradually than Qdm. At

small scales k >� 1h/Mpc, the di�erent mass weighing of the galaxy bispectrum leads to a suppression

of the scale dependence of Q. The dot-dashed curve shows again the sensitivity to the low-mass cuto�

(mcut = 1011:5M�/h); as expected, the distribution at small scales is more biased. To be more quantitative,

let's note that at small scales, where 1-halo terms dominate, the scaling of the p-point spectrum is

Tp(k) �

Z
n(m) mp [um(k)]

p
hNp

gal i

mp
dm; (51)

and at small masses m� m�, n(m) � m�2�a(m), c(m) � m�b and um(k) � [sin� Sic(�)�cos � Ci(�)]= ln c,

where Sic(�) � �=2�Si(�). This expression for the pro�le follows when c� 1, at large �, um(k) � (� ln c)�1.

Furthermore, if �(m) � m(n+3)=6 as in the scale-free case, and hNp
gal i � mp(1��), changing variable from m

to �, we have

Tp(k) � k[6(1�p+p�)�(n+3)a]=[2(3b+1)]; (52)

where we have neglected the weak logarithmic dependence of the pro�le on the concentration (which leads

to additional suppresion at small scales) and used that the integral over � converges. This means that the

reduced spectra Qp(k) � Tp(k)=[P (k)]p�1 scale as Qp(k) � kp with

p = (p � 2)
a(n+ 3)� 6�

2(3b+ 1)
: (53)
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This generalizes the derivation in Ma & Fry (2000b) for galaxies. The validity of the hierarchical ansatz,

p � 0, thus depends on the low-mass behavior of the concentration parameter, mass function and Ngal.

For scale-free initial conditions, the validity of the hierarchical ansatz for the mass correlation functions

is linked to that of stable clustering (Peebles 1980), although for higher-order correlation functions stable

clustering takes a di�erent form than the usual two-point requirement that pairwise peculiar velocities cancel

the Hubble ow (Jain 1997). We see that for p = 3 (the bispectrum), a = 0:4 (ST mass function), � = 0:1,

ne� � �2:5 (k = 3 h/Mpc), and b = 0:13, 3 � �0:3, which agrees approximately with the behavior of

Qgal in Fig. 6. This is only qualitative, due to the many approximations involved. On the other hand,

it captures the general behavior of mass weighing, for b > 0, supressing contributions from massive halos

(� > 0) preferentially places galaxies in more concentrated halos, thus at a given k one is probing outer

regions of the NFW pro�le compared to the mass case. Since in the outer regions u(r) � r�3, Qgal is less

scale dependent than Q.

Figure 7 shows the Sp parameters as a function of smoothing scale R for the mass (dashed; same as

ST in Fig 5), the galaxies with mcut = 1011M�/h (dot-dashed) and the galaxies with mcut = 1011:5M�/h

(solid). Although we see the same general behavior as in the bispectrum case, it is interesting that the

galaxy Sp parameters are smaller than the dark matter ones at small scales, which is similar to the trend

seen in comparisons of dark matter predictions with real galaxy catalogs. Both galaxy plots assume that

the galaxy per halo moments obey Eq. (49). We have repeated the calculation assuming Poisson statistics

(�(m) = 1) and found that the results are the same for scales R � 5 Mpc/h, and that at R = 1 Mpc/h the

Poisson values are about 15% below those shown in Fig. 7. The sensitivity of the clustering to the details

of the relation of the number of galaxies as a function of halo mass can be used to probe aspects of galaxy

formation, as we now discuss.

5. Comparison with APM Survey: Constraints on Galaxy Formation

Measurements of two-point and higher order moments of the galaxy �eld in the APM survey (Maddox

et al. 1990) provide important constraints on models of galaxy clustering. Here we use the measurements

of counts-in-cells, deprojected into three dimensions, by Gazta~naga (1994,1995) to constrain the Ngal(m)

relation.

As discussed above, galaxy clustering at large scales is given by the standard local-bias model, with bias

parameters obtained from Eq.(39). To constrain the Ngal(m) relation, we use the parametrized form

hNgal i = (m=m0)
a1 ; mcut � m � m0; hNgal i = (m=m0)

a2 ; m � m0; (54)

with hNgal i = 0 for m < mcut and the second moment obeys Eq. (47) with

�(m) =
log(m=mcut)

log(m0=mcut)
; (55)

for m � m0 and �(m) = 1 for m � m0. For the higher-order moments we adopt the binomial model in

Eq.(49). Requiring that pm in the binomial model to be positive implies that a1 � 0. Note that in Eq. (54)

we have set hNgal i = 1 at m = m0 since clustering statistics do not depend on the overall number density

of galaxies; however, constraints such as the luminosity function and the Tully-Fisher relation are sensitive

to the overall amplitude of the Ngal(m) relation.
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For the measured values in APM at large scales, we use that �2g = 0:167� 0:021 at R = 20 Mpc/h, and

for the higher-order moments we use (S3)gal = 3:3� 0:5 and (S4)gal = 15� 4 at R = 20 Mpc/h. The latter

are �ducial values obtained by averaging over the large scale (R > 10) skewness and kurtosis, rather than

the value at a particular scale. The skewness at large scales is rather at so averaging is reasonable (see

Fig. 10), for the kurtosis the large scale limit is not so well de�ned, but in practice this constraint is not very

important because it comes with large error bars.

The constraint on the variance at large scales sets the linear bias parameter, 1 <� b1 <� 1:15, whereas the

skewness also depends on the non-linear bias b2. In halo models, b1 and b2 are not independent|for a given

mass function they have a speci�c relation as a function of halo mass, Eqs. (14-15), shown in Fig.8 in terms

of the threshold parameter � = Æc=�(m). As a result of this relation, it turns out to be non-trivial to satisfy

both �2g and (S3)gal constraints simultaneously. Essentially, since galaxies in cluster normalized �CDM are

constrained by the APM variance to be almost unbiased at large scales (b1 � 1), a high skewness (as high

as the mass skewness, shown as dashed lines in Fig. 10) requires that b2 � 0, which is not easy to obtain if

galaxy formation is ineÆcient at small and large halo masses (the latter is required to suppress the 1-halo

term contribution to the variance and match the observations at small scales). To quantify constraints on

the Ngal(m) relation, we run a Monte Carlo with varying parameters for the Ngal(m) relation,

109M�=h � mcut � 1013M�=h; mcut � m0 � mcut � 104; �1 � a1 � 4; 0 � a2 � 1:5; (56)

and use the bias parameters from Eq.(39) in Eq.(44) to decide whether a given model is accepted. We

considered both PS and ST mass functions. For the mass, we use that at R = 20 Mpc/h, �2 = 0:145,

S3 = 2:9, and S4 = 14:6. Note that the inferred deprojected variance of the APM corresponds to a median

redshift �z = 0:15, so we extrapolate the predictions from �CDM �8 = 0:90 to this redshift.

If we impose no further constraint on the high-mass slope a2, we �nd that the maximum skewness (at

R = 20Mpc/h) is S3 = 3 for the ST mass function (with a2 = 1) and S3 = 3:1 for the PS mass function

(with a2 = 1:1). However, such a high value for a2 means that 1-halo terms are not suppressed with respect

to the mass, and thus the variance and skewness at scales R � 1� 5Mpc/h are much larger than observed.

If we restrict a2 <� 0:9, we �nd that the maximum skewness for the PS mass function becomes S3 = 2:4,

uncomfortably small for APM galaxies (but see below for discussion of APM deprojection issues). For the ST

mass function we �nd that values as high as S3 = 2:64 are possible (with S4 = 12:6), this requires in addition

that a1 � a2 = 0:9 and mcut <� 1010M�=h, so galaxy formation is relatively eÆcient in small-mass halos.

This values are insensitive to m0, as a1 � a2 and the large-scale clustering is insensitive to the distribution of

galaxies within halos. Essentially, in this model galaxies trace as much as possible the dark matter. However,

as shown in Figs. (9-10) in solid lines (mcut = 8 � 109M�=h, m0 = 6 � 1010M�=h, a1 = 1:2, a2 = 0:9),

the small-scale variance and skewness are overestimated in this model. So, further suppression of galaxy

formation in high-mass halos is required, a2 < 0:9. Similarly, the galaxy model of Eq.(46) (dot-dashed lines

in Figs. (9-10)) su�ers from the same problem for the skewness.

Before we turn to constraints derived from small-scale clustering, we should note that these depend on

at least two additional assumptions (rather than just the Ngal(m) relation). First, we are assuming that

galaxies trace the dark matter pro�le. Fig. 2 in Diaferio et al. (1999) shows that this cannot be true for

both red and blue galaxies. The blue semianalytic galaxies, which should be more like the ones in the APM

survey, are preferentially located in the outer regions of their parent halos. In the semianalytic models,

this happens because, in the time it takes for a galaxy's orbit to decay (by dynamical friction) from the
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edge of its parent halo to the centre, its stars age, so its colour changes from blue to red. Blue galaxies on

approximately radial orbits which might pass close to the halo centre spend most of their time far from the

centre anyway. As a result, most galaxies near the halo centre are red, and those further out are blue. To

mimic this e�ect, we have studied what happens to our model predictions if we decrease the concentration

parameter by a factor of two; as explained above, this decreases the variance but it does not change the ratio

of moments such as the skewness appreciably, so our results seem robust to this e�ect.

Second, recall that we are assuming that halo-halo correlations are well described by leading order

PT. In the case of the clustering of dark matter, this was well justi�ed because at scales where exclusion

e�ects become important (invalidating the extrapolation from PT), 1-halo terms dominate over halo-halo

correlation contributions. For galaxies this may not be true anymore, particularly since many small mass

halos host at most one galaxy, so the 1-halo term from these halos is suppressed. For example, we �nd

that at 3 Mpc/h, the contributions of 1-halo and 2-halo terms to the variance and the third moment of the

galaxy counts are comparable, whereas this scale is about 5 Mpc/h for the dark matter. If one assumes

that exclusion e�ects suppress the contribution of 2-halo terms (see e.g. Fig. 5 in Mo & White 1996, or the

analytic treatment of exclusion e�ects in Sheth & Lemson 1999), one might conclude that the skewness is

higher than what we get by including 2-halo contributions using PT, since these a�ect more the square of

the variance than the third moment. On the other hand, Mo, Jing & White (1997) show that, on scales

smaller than the non-linear scale, our formulae for the 3-halo and 4-halo terms signi�cantly overestimate the

skewness and kurtosis of the haloes in their simulations (see the bottom right panels of their Figs. 3 and 4).

Therefore, although these exclusion e�ects may conspire to approximately cancel out in the end, we should

bear in mind that non-trivial behavior from exclusion e�ects can invalidate our conclusions from clustering

statistics at small scales.

Modulo these caveats, if we impose the additional constraint that at small scales, e.g. R = 1Mpc/h,

(S3)gal <� 6, we �nd models with parameters

mcut = 4� 109M�=h; m0 = 8� 1011M�=h; a1 = 1; a2 = 0:8; (57)

mcut = 2:5� 1010M�=h; m0 = 1012M�=h; a1 = 0:8; a2 = 0:8; (58)

mcut = 6� 1010M�=h; m0 = 1:2� 1012M�=h; a1 = 0:6; a2 = 0:8; (59)

the �rst of which is shown in Figs. 9-10 as dotted lines (the others have very similar behavior). However, all

these models predict a small scale variance which is too large; in fact in Fig. 9 we have used a concentration

parameter a factor of two smaller than Eq.(12) to decrease the small-scale variance . We were unable to

�nd a model which matched both the variance and skewness of the APM survey at all scales. Therefore,

we conclude that the skewness provides a stringent constraint on models of galaxy formation. In particular,

the relatively large skewness at large scales and relatively small skewness at small scales provide opposite

requirements on the number of galaxies per halo for massive halos. The \large" value of the skewness at

large scales requires that galaxies trace mass; however the small value of the skewness at small scales requires

that galaxy formation be suppressed in massive halos.

In deprojecting from angular to three-dimensional space, Gazta~naga (1994,1995) assumed the validity of

the hierarchical ansatz for the three- and higher-order correlation functions. At large scales, however, PT pre-

dicts that the hierarchy of correlation functions is not a simple hierarchical model with constant amplitudes,

but rather the amplitudes depend strongly on the shape of the con�guration (i.e. the bispectrum depends

on the triangle con�guration). This can a�ect the deprojection (Bernardeau 1995; Gazta~naga & Bernardeau
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1998); in particular it can lower the three-dimensional skewness and higher-order moments deduced from

the angular data, perhaps by as much as 20% at R >� 10Mpc/h (Gazta~naga, private communication). At

large scales, at least, this would improve the agreement with halo-model predictions.

6. Conclusions

We used the formalism of Scherrer & Bertschinger (1991) to construct an analytic model of the dark

matter and of galaxies. For the dark matter, we �nd that the predictions are in good agreement with numeri-

cal simulations, except for the con�guration dependence of the bispectrum at small scales. This (numerically

small) disagreement can be traced to the assumption that halo pro�les are spherically symmetric; in reality

the halos generically found in CDM simulations are triaxial. In general, halo models provide accuracy no

better than 20% when compared to simulations. However, as N-body results converge on the values of the

ingredients of halo models (pro�les, mass functions, etc.), their predictions will improve.

We showed how the �nite volume of the simulation box can signi�cantly a�ect the results of higher-

order statistics, due to the fact that small boxes have a de�cit of massive halos. In particular, we showed

that, by making suitable cuts in halo mass function, we were able to reproduce the observed behavior of

the bispectrum in small-box (100 Mpc/h) simulations. At small scales, halo models predict a signi�cant

departure from the hierarchical scaling, unless the low-mass dependence of the concentration parameter,

the mass function, and the small-scale slope of the halo pro�le are di�erent from the currently accepted

values. Unfortunately, the limited resolution of our simulations cannot test these predictions. We caution

that Ma & Fry's (2000) conclusion about the breakdown of the hierarchical ansatz in numerical simulations

is premature as their results are likely to su�er from �nite volume e�ects and inadequate resolution.

If galaxies in individual dark matter halos trace the dark matter pro�les, galaxy clustering is completely

determined within halo models by specifying the moments of galaxy counts as a function of halo mass. In

general, suppression of galaxy formation in large-mass halos leads to a power-law like behavior for the galaxy

power spectrum and higher-order moments which are smaller than for the dark matter. This is similar to

what is observed in galaxy surveys. However, a quantitative comparison with counts-in-cells statistics in the

APM survey puts stringent constraints on the galaxy counts as a function of halo mass. At large scales,

these require that galaxies trace the mass as closely as possible, implying that galaxy formation is relatively

eÆcient even in small-mass halos. In addition, the small-scale behavior of the skewness requires a high-mass

slope for the Ngal(m) relation of about a2 = 0:8, although we found no model which simultaneously �ts the

small scale value of the second moment. The parameters of our \best �t models" are given in Eqs. (57-59).

These constraints are independent of those derived from the luminosity function and Tully-Fisher relation

which are sensitive to the overall amplitude of the galaxy counts as a function of halo mass.

Clearly, halo models provide a useful framework within which to address many interesting questions

about galaxy clustering, and also related topics such as galaxy-galaxy and quasar-galaxy lensing. Our

treatment should be of particular interest for the interpretation of clustering in future galaxy surveys, such

as SDSS and 2dF. In these cases, however, redshift distortions of clustering must also be taken into account.

We plan to address this issue and others relevant to upcoming galaxy surveys in the near future.
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Fig. 1.| The reduced bispectrum Qeq(k) for equilateral con�gurations as a function of scale. The triangle

symbols show the average over 14 realizations of box size Lbox = 100 Mpc/h; the 3 solid lines represent

results for 3 individual realizations. The dashed line denotes the same realization as the companion solid

line but ran with half the softening length (50 Kpc/h). The square symbols denote the average over 4

realizations with Lbox = 300 Mpc/h. The disagreement of the large and small box measurements is due to

�nite-volume e�ects in the latter.
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Fig. 2.| The top panel shows the ratio of power spectra for the PS and ST mass function to the �tting

formula for the non-linear power spectrum of Peacock & Dodds (1996) as a function of scale. The dashed

(dotted) lines show the contributions to the 1-halo term in the PS (ST) case from halos of mass 10 <

m=m� < 100, 1 < m=m� < 10 and 0:1 < m=m� < 1 from left to right. Bottom panel shows the predictions

for the reduced equilateral bispectrum; the dashed lines show the individual contributions (for the ST case)

of 3-halo, 2-halo and 1-halo terms, which dominate at large, intermediate and small scales, respectively. The

dotted lines show the contributions to the 1-halo term in Q in the PS case from halos in the mass range

10 < m=m� < 100 and 1 < m=m� < 10.



{ 25 {

Fig. 3.| Comparison of the N-body results of Fig. 1 (points with error-bars) with the predictions of Fig. 2

(solid lines). The dashed lines show the predictions of halo models when there are no halos of mass larger

than m = 1014 M�/h in the simulation volume, to illustrate �nite volume e�ects, for both PS (lower

curve) and ST mass functions. The dot-dashed lines represent the predictions if halos of mass larger than

m = 5:9� 1014M�=h (or m = 6:8� 1014M�=h) are excluded for PS (or ST) mass functions.
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Fig. 4.| Comparison of the N-body results with the predictions of halo models for the reduced bispectrum

as a function of triangle shape. Symbols and error bars are as in Fig. 1. Solid lines show the predictions of

ST (top) and PS (bottom) mass functions. The top panels and lower left panel show di�erent scales, whereas

the lower right panel shows the partial contributions to the total value, from 1-halo, 2-halo and 3-halo terms

for the ST case.
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Fig. 5.| Sp parameters (p = 3; 4; 5 from bottom to top) as a function of smoothing scale R. Symbols and

error bars are as in Fig. 1. Solid lines show the predictions of ST (upper) and PS (lower) mass functions.

Dashed lines show the asymptotic behavior predicted by HEPT. Again, the disagreement of the small volume

simulations (triangles) with those of bigger volume (squares) is a direct consequence of �nite volume e�ects

in the former. The vertical lines denote the softening length of the two sets of simulations.
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Fig. 6.| The top panel shows the galaxy power spectrum (�(k) = 4�k3P (k)) as a function of scale predicted

by halo models for ST (dot-dashed) and PS (solid) mass functions, using the Ngal(m) given in Eq. (46).

The dashed line shows the mass power spectrum predicted by the �tting formula for the ST case. The

dotted line shows the power for the ST case if the lower mass cut-o� is changed from mcut = 1011M�=h

to mcut = 1011:5M�=h. The bottom panel shows the reduced galaxy bispectrum for equilateral triangles

as a function of scale for mcut = 1011M�=h (solid), mcut = 1011:5M�=h (dot-dashed), and for the mass

(dashed). These assume the ST mass function.
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Fig. 7.| Sp parameters (p = 3; 4; 5 from bottom to top) as a function of smoothing scale R for the mass

(dashed), galaxies as in Eq.(46) with low-mass cuto� at mcut = 1011M�/h (dot-dashed) and galaxies with

mcut = 1011:5M�/h (solid).
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Fig. 8.| Halo linear (b1, solid lines) and non-linear (b2, dashed lines) bias parameters as a function of

threshold � = Æc=�(m) for the PS and ST mass functions. The dot-dashed lines denote b1 = 1 and b2 = 0

for comparison.
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Fig. 9.| The variance of APM galaxies as a function of smoothing scale R (symbols) compared to the

predictions for galaxies as in Eq.(46) with mcut = 1011M�/h (dot-dashed) and galaxies from Eq.(54) (solid)

with a1 = 1:2, a2 = 0:9, mcut = 0:8�1010M�=h and m0 = 6�1010M�=h. Dotted lines show the predictions

for using Eq. (54) with the parameter values in Eq. (57).
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Fig. 10.| Same as previous �gure for the Sp parameters. In addition, the dashed lines show the predictions

for the mass.


